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J .  Phys. A: Math. Gen. 21 (1988) 651-667. Printed in the U K  

Dynamical and kinematical supersymmetries of the quantum 
harmonic oscillator and the motion in a constant 
magnetic field? 

J Beckers, D Dehint and V Hussin 
Physique theorique et mathhat ique ,  lnstitut de Physique au Sart Tilman, B5, Universite 
de Liege, 8-4000 Liege 1, Belgium 

Received 21 May 1987, in final form 1 September 1987 

Abstract. Dynamical and kinematical symmetries and supersymmetries of the n -  
dimensional harmonic oscillator are discussed in connection with two different supersym- 
metrisation procedures: the so-called standard and spin-orbit coupling procedures. The 
largest invariance structures appear within the standard procedure dealing with the same 
numbers of bosonic and fermionic degrees of freedom. We also get meaningful substructures 
within the spin-orbit coupling procedure dealing with fermionic degrees of freedom which 
are half of the bosonic ones. Finally the n = 2 case is connected with the study of the 
motion in a constant magnetic field. Each procedure leads to a nice correspondence 
between the two systems under consideration. 

1. Introduction 

We recently discussed (Beckers et a1 1987) the supersymmetric version of the one- 
dimensional harmonic oscillator by taking into account its conformal properties. This 
paper will hereafter be referred to as I and for brevity we will refer to some of its 
equations. We mainly plan to extend these considerations to dynamical as well as 
kinematical symmetries and supersymmetries. 

Let us recall that a dynamical group (Wybourne 1974) of a physical system is a 
symmetry group that can yield the energy spectrum and the degeneracies of the levels 
and that contains a set of operators determining the transition probabilities between 
states. The study of such dynamical groups has already been considered in connection 
with elementary particle spectroscopy (Barut 1964, 1965, 1972) and with fundamental 
applications in quantum mechanics (Wybourne 1974), the harmonic oscillator and the 
hydrogen atom, for example. 

A kinematical group or, more precisely, a maximal kinematical invariance group 
(Niederer 1972) is the largest group of spacetime transformations which leave invariant 
the wave equation describing a physical system. In the relativistic context the Poincark 
group (Wigner 1939) and the conformal group of spacetime (Kastrup 1962, Mack and 
Salam 1969) are the maximal kinematical invariance groups of free non-zero and zero 
mass particles, respectively. In the non-relativistic context Niederer ( 1972) and Hagen 
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(1972) have determined the maximal kinematical invariance group of a three- 
dimensional free particle as a twelve-parameter Lie group containing the usual Galilean 
transformations as well as the dilatations and expansions and characterising the 
so-called ‘non-relativistic conformal quantum mechanics’. This latter domain has been 
extensively studied in connection with different specific Schrodinger equations with 
interaction (Niederer 1973, 1974, Boyer 1974) where we evidently notice a particular 
interest for the harmonic oscillator. 

Dynamical as well as kinematical groups of the harmonic oscillator have some 
specific and some common properties. If the dynamical ones show remarkable features 
in connection with the symplectic groups (Wybourne 1974, Jacobson 1962, Gilmore 
1974), the dynamical and kinematical groups have in common the Heisenberg group 
(Miller 1968, Talman 1968). Moreover, these Heisenberg groups play a primordial 
role since their associated algebras are generated by the bosonic creation and annihila- 
tion operators. 

All the above notions and structures can be analysed and extended to the recent 
context of supersymmetric quantum mechanics (Witten 1981). In fact, different contri- 
butions have already been published (de Crombrugghe and Rittenberg 1983, Fubini 
and Rabinovici 1984, Durand 1985, Balantekin 1985, Kostelecky et a1 1985, Gamboa 
and Zanelli 1985, Beckers and Hussin 1986, D’Hoker et a1 1987) if we limit ourselves, 
besides I ,  mainly to those dealing with the harmonic oscillator case and ‘with the 
non-relativistic conformal (super)symmetries. For the dynamical point of view we 
especially point out the de Crombrugghe-Rittenberg paper in connection with the 
so-called standard procedure of supersymmetrisation (Witten 1981) applied to the 
harmonic oscillator. 

Our purposes here are twofold. Firstly, we want to point out the properties of the 
non-supersymmetric n-dimensional harmonic oscillator in what concerns its dynamical 
and kinematical symmetries. This discussion will then be extended to its supersym- 
metries by studying and comparing two different procedures of supersymmetrisation: 
the standard one (Witten 1981) and the spin-orbit coupling one introduced and 
discussed in I .  Secondly, we want to take advantage of the particular case of two 
spatial dimensions and to connect it with the study of symmetries and supersymmetries 
for the motion in a constant magnetic field, another fundamental application in 
(supersymmetric) quantum mechanics. 

This second purpose needs a few more comments in order to point out its interest. 
Since the work of Johnson and Lippmann (1949) the study of the motion in a constant 
magnetic field has been related to typical properties of the harmonic oscillator. In  
two-dimensional spaces, the Hamiltonians of the harmonic oscillator and of the above 
magnetic case are the generators of two non-conjugate one-dimensional subalgebras 
of the inhomogeneous symplectic invariance algebra (Burdet and Perrin 1975). 
Moreover we have just constructed a time-dependent rotation (Dehin and Hussin 1987) 
putting these two applications in a one-to-one correspondence as Niederer (1973) gave 
an ad hoc change of variables connecting the harmonic oscillator to the free case. 
Finally we also recall (Boyer 1974) that the n = 2 context has a direct bearing on the 
study of conformal invariance in relariuisric mechanics when viewed from the infinite 
momentum frame (Domokos 1972, Burdet er a1 1973). Their supersymmetric versions 
then appear to be very interesting with, among other purposes, the one corresponding 
to the construction of the relativistic supersymmetric quantum mechanics. 

The contents of this paper are arranged as follows. In § 2, the n-dimensional 
quantum harmonic oscillator is characterised by its dynamical (Wybourne 1974) and 
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kinematical (Niederer 1973) symmetries ( Q  2.1) as well as supersymmetries ( $ 5  2.2 and 
2.3), the last two subsections being devoted to the discussion of the standard and 
spin-orbit coupling procedures of supersymmetrisation. Here we will effectively put 
the accent on the corresponding algebras and superalgebras as well as on their inclusion 
properties. Restricted to the ( n  = 2)-dimensional case, § 3 concerns the study of the 
motion in a constant magnetic field chosen along the z axis and its connection with 
the harmonic oscillator case. Once again its symmetries ($ 3.1) as well as its supersym- 
metries (§$ 3.2, 3.3 and 3.4) are considered, the latter being discussed ( 0 9  3.2 and 3.3) 
and compared (0 3.4) in connection with the above two supersymmetrisation pro- 
cedures. Finally the change of variables (Dehin and Hussin 1987) enlightening the 
connection between the two-dimensional harmonic oscillator and the motion in a 
constant magnetic field (already applied to symmetries) is considered in $ 4  in the 
supersymmetric context dealing with both bosonic and fermionic variables. 

According to those used in I ,  our notations and conventions are the current ones 
but let us mention that all the (super)algebras specified in this paper are defined over 
the real field R. For brevity we have then suppressed this symbol. Moreover, with the 
conventional notations for the (super)symplectic structures sp(2n), sp(4), osp(2n/2n) 
and osp(4/4), we point out that the spin-orbit coupling procedure leads to a superal- 
gebra osp(2/4) where the fermionic degrees of freedom are half the bosonic ones. 
Accordingly we decide to refer to the corresponding Heisenberg (super)algebras by 
denoting them as follows: h(2n), h(4), sh(2n/2n) and sh(4/4) but by sh(2/4) for the 
Heisenberg superalgebra of the spin-orbit coupling procedure. The dimensions of all 
these (super)algebras will be explicitly given in the text. 

2. Symmetries and supersymmetries of the quantum harmonic oscillator 

Let us study here the harmonic oscillator and its (super)symmetries when the n -  
dimensional case is considered. The symmetries ($  2.1) refer to dynamical ones follow- 
ing Wybourne (1974) as well as to kinematical ones following essentially Niederer's 
approach (Niederer 1973). The supersymmetries arising from the standard procedure 
(Witten 1981) (§  2.2) are essentially deduced from the de Crombrugghe-Rittenberg 
contribution (de Crombrugghe and Rittenberg 1983) looking for the largest dynamical 
superalgebra. Then we present the so-called spin-orbit coupling procedure (Balantekin 
1985, Kostelecky et a1 1985, Gamboa and Zanelli 1985, Beckers et a1 1987) ( 9  2.3) and 
the corresponding results. 

2.1. The n-dimensional harmonic oscillator 

The non-supersymmetric n-dimensional harmonic oscillator is characterised when the 
mass m is taken as unity by the Hamiltonian 

where the subscript 0 refers to the oscillator case and where n-dimensional vectors 
in general as well as current creation ( a + )  and annihilation ( a - )  operators are denoted 
as usual by U = ( U , ,  . . . , U " ) .  These operators are defined by 
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and satisfy the commutation relations 

[a-.,, a+,/]  = a k / .  (2.3) 

Wybourne (1974) has determined the maximal dynamical invariance ( M D I )  algebra 
as the one associated with the degeneracy group of the harmonic oscillator. The M D I  

algebra is found to be sp(2n)B h(2n) with (n + 1) (2n + 1) dimensions, the semi-direct 
sum of the n(2n + 1)-dimensional symplectic algebra sp(2n) and the (2n + 
1)-dimensional Heisenberg algebra h(2n).  Its generators correspond to the constants 
of motion for the Hamiltonian (2.1) and take the form: 

P * , k ( t )  = *i exp( Tiwt)(wxA Tipk)  = i i (2w)’”exp(r iwt)a , , ,  (2.4) 

Together with the identity operator, the P + , k  E (2.4) generate the algebra h(2n) while 
the T and C, given by (2.5) generate the algebra sp(2n). Let us insist here on the 
fundamental role played by the Heisenberg algebra: the generators (2.5) appear as 
combinations of second-order products of the generators (2.4). Their commutation 
relations are easily obtained by taking into account the relations (2.3). 

After Niederer (1973) we know that the maximal kinematical invariance ( M K I )  

algebra of the harmonic oscillator is determined by the generators associated with 
coordinate transformations, leaving invariant the corresponding Schrodinger equation 
in n dimensions. Such an algebra has the structure [s0(2, l ) O s o ( n ) ] 3 h ( 2 n ) ;  it is of 
dimension ( 3 + f n ( n  - 1 ) + 2 n  + 1) and is isomorphic to s x ( n ) ,  the central extension 
of the Schrodinger algebra, the M K I  algebra (Niederer 1972) of the free Schrodinger 
equation. These considerations refer to the so-called ‘conformal non-relativistic quan- 
tum mechanics’ (Hagen 1972, Niederer 1972). The s o ( 2 , l )  algebra corresponds to the 
(three) conformal symmetries including the Hamiltonian (2.1) and the generators 

C , ( t )  = i i w  exp( ~ 2 i w t ) a t  = .$iP:(t). (2.6) 

The s o ( n )  algebra is generated by the $n(n - 1) operators associated with spatial 
rotations; they are given by 

Let us consequently point out the following inclusion: 

[sp(2n) 3 hl2n)] 2 [so(2, l ) O s o ( n ) ]  3 h(2n) (2.8) 

the equality only being ensured for the one-dimensional case. In  fact, we have (with 
summation on repeated indices) 

HO = Tkk cr = c z , k k  L k / = ( i / W ) ( T k I -  TL) (2.9) 

and we notice that, besides the kinematical generators, there are dynamical ones which 
cannot be associated with coordinate transformations. 

2.2. The n-dimensional supersymmetric harmonic oscillator and the standard procedure 

Within the supersymmetric ( S S I  version described by de Crombrugghe and Rittenberg 
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(1983), the harmonic oscillator Hamiltonian is 
H;s = $ ( p 2 +  w 2 x 2 )  +$U[&+,  5-3 

= M a + ,  a - } + f w [ g + ,  5-1 (2.10) 

{ [ + , k ,  6-,1} = S k l  { 6 * , k ,  5*,/) = 0. (2.11) 

(P: = 6 + . k  + 6 - . k  (2.12) 

where the operators 6 t . k  are Grassmann variables satisfying 

With the choice of the fermionic quantities 

( P i  = i(6-,k - '$+,k) 
we obtain a Clifford algebra 

{(PE (Pop> = 2S"bak/* (2.13) 
We then deal with a description which admits the same number (2n) of bosonic and 
fermionic degrees of freedom, the bosonic ones being the canonically conjugated 
(generalised) positions and momenta. 

The supersymmetry subtended by these considerations is a N = 2 supersymmetry 
with two type-Q supercharges (see equations ( I ,  6.6)) 

(2.14) 
1 .  Q* = - ( p  7 iwx) &+ = 7 iw'I2a, &* a 

such that 

{Q+ 9 0-1 = JGS (2.15) 
and 

[Q* 9 HFI = 0. (2.16) 
Here the supersymmetric version ofthe M D I  algebra sp(2n)B h(2n) is the (8n2+4n + 

1)-dimensional M D I  superalgebra osp(2n/2n) 3 sh(2n/2n), the semi-direct sum of the 
(8n2)-dimensional superalgebra osp(2n/2n) and the (4n + 1)-dimensional Heisenberg 
superalgebra sh(2n/2n ). We evidently have the inclusion 

(2.17) 
Let us insist on the fact that the Heisenberg superalgebra is generated by the identity 

operator, the P x , h  given by (2.4) and their fermionic analogous (see equations ( I ,  6.1 1)):  

T*,h(f)  = exp( 7 iwt)S,,k k = 1 , 2  , . . . ,  n. (2.18) 
With respect to the superalgebra osp(2n/2n) we point out that it is constructed from 
bosonic symmetries associated with sp(2n) given in ( 2 . 9 ,  from fermionic symmetries 
described by the algebra so(2n) generated by { Yk/( t ) ,  Z, ,kI (  t ) ,  k, 1 = 1,2 , .  . . , n} and, 
finally, from supersymmetries with type-Q and type-S (Fubini and Rabinovici 1984) 
supercharges { Q r , k l (  t ) ,  Sr ,A , (  t ) } .  Explicitly these operators are 

[osp(2n/2n) 3 sh(2n/2n)] 2 [sp(2n)B h(2n)l. 

yA/(t)= Ykl(O)=fW[t+,~, 5-,/]=4U[T+,/,7 T-/I 
(2.19) 

Z ,  A t i t )  = *fiw e ~ p ( = 2 i w r ) [ 5 * , ~ ,  51.,1 = i i iw[T,.L, T-, ,]  
and 

(, 2.20) 
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Such characteristics essentially correspond to the de  Crombrugghe-Rittenberg results 
which, however, did not contain our Heisenberg superalgebra sh(2n/2n).  Let us notice 
that this last superalgebra appears to be fundamental as already shown in I since the 
osp(2n/2n) generators are written as second-order products of the sh(2n/2n)  operators 
(2.4) and (2.18). 

Now, in connection with I,  if we want to limit ourselves to kinematical symmetries 
and supersymmetries of the harmonic oscillator, i.e. if we want to determine the M K I  

superalgebra enhancing coordinate transformation laws, we immediately notice that 
the symmetries of Ho= (2.1) generating the algebra [s0(2, l ) O s o ( n ) ] % ,  h(2n) are still 
conserved for the Hamiltonian Hg’s(2.10) but have to be completed by others in 
order to close the superalgebra. In fact, besides the generators Ho= (2.1), Pr,k = (2.4), 
C, = (2.6) associated with kinematical bosonic symmetries as well as the supercharges 
(2.14), we have to add the generators associated with the fermionic symmetries T,,k = 
(2.18) and Y given by 

y = t w r 5 + ,  5-1 (2.21) 

as well as with the type-S supercharges (see equations ( I ,  6.12)) 

1 
S, = - exp(+2iwt)(p * iwx) - g* = *iw”* exp(+2iwt)a, gr. (2.22) Jz 

Finally we have to replace the generators Lkl = (2.7) (corresponding only to orbital 
angular momentum considerations) by new ones corresponding to the total angular 
momentum, i.e. 

Jkl = Lk/ + x k /  (2.23) 

where 

x k /  = -i(t-,kt+,/ - t - , l t + , k ) .  (2.24) 

It is easy to recognise that the whole set of the above generators corresponds to the 
M K I  superalgebra [osp(2/2)@so(n)] 33 sh(2n/2n) where, in particular, the eight- 
dimensional superalgebra osp(2/2) is generated by the three conformal operators 
{ H o ,  C,}(-s0(2, l)) ,  by the fermionic operator Y (  E so(2)) and by the four super- 
charges Q+ and s,. The osp(2/2) commutation and anticommutation relations are 
summarised in the form 

The further structure relations of the M K I  superalgebra are 



Dynamical and kinematical supersymmetries 657 

(2.26) 

Such a kinematical superalgebra is evidently contained in the dynamical superal- 
gebra previously discussed. We have 

[osp(2n/2n)3  sh(2n/2n)] 2 [ [osp(2/2)0so(n)]3sh(2n/2n)]  (2.27) 

the equality only being ensured for the one-dimensional context showing that dynamical 
and kinematical supersymmetries then coincide (see I). As a last remark let us mention 
that the fermionic generators (2.21) and (2.24), as well as the supercharges (2.14) and 
(2.22), can be simply expressed in terms of the dynamical operators (2.19) and (2.20). 
Indeed we have 

(2.28) 

Due to the definitions (2.4) and (2.18) we also get 

y=iw[T+,k,  T- .k l  x k f  = -i( T-,kT+,l - T-,fT+,k) (2.29) 

and 

1 1 
S,=-P, - T , .  (2.30) Jz Q,=-Ppi * T ,  Jz 

2.3. The n-dimensional supersymmetric harmonic oscillator and the spin-orbit coupling 
procedure 

Now let us comment on another supersymmetrisation procedure we have proposed 
(see I) by modifying the structure relations (2.11) or (2.13) on the variables [+,L or 
cp;. Let us require 

(2.32) 

This relation essentially differs from the one obtained for the Clifford algebra (2.13) 
and leads to a smaller number of fermionic degrees of freedom in this procedure. 

We can then develop a supersymmetric theory characterised by the same super- 
charges Q+ given by (2.14) but leading to a new Hamiltonian ( H g ) ’ .  We effectively 
obtain with (2 .31)  

{O+ 3 0-) = W 3 ’  
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where 

(Hi’)‘ = f(p2 + W’X’) + f W [  &+, 5-3 - f W  (XkPl- xlp,)Ekl .  (2.33) 

Such a Hamiltonian contains the usual bosonic part (see (2.1)) but its fermionic part 
is supplemented by a spin-orbit coupling term so that we recover the supersymmetric 
Hamiltonian recently discussed by Balantekin ( 1985) in the three-dimensional context 
and generalised to the n-dimensional one by Kostelecky e? a1 (1985). In  fact, we get 
from (2.10) and (2.33) 

( H g’)‘ = H zs - ; W L k ,  (2.34) 

The symmetries and supersymmetries of the Hamiltonian ( H i s ) ’ =  (2.34) could be 
discussed in connection with those of HF= (2.10). They differ by the presence of the 
additional spin-orbit coupling term justifying the appellation of such a supersymmetri- 
sation procedure. 

Here let us notice that the superalgebra osp(2/2)Oso(3) obtained by Balantekin 
(1985) as the M K I  superalgebra of the Hamiltonian (2.34) in the three-dimensional case 
has also been generalised by Kostelecky et a1 (1985) to the n-dimensional context. 
While we start from supercharges leading to the Hamiltonian (2.34), Kostelecky et a1 
(1985) start from a given Hamiltonian with spin-orbit coupling term and show that it 
is supersymmetric. Indeed it admits supercharges Q* = (2.14) but with a specific 
realisation of our variables t * , k .  In fact, it is easy to see that 

t z , k  =rho(+* (2.35) 

where the rk are the generators of the Clifford algebra mentioned by Kostelecky et 
al. Then we have the interesting property 

{rkgg+,  r/o(+-j = 8 k l + 2 i ~ k l ~ ( T 7  (2.36) 

where the matrices 

(2.37) 

generate a s o ( n )  algebra. With respect to our  constraints (2.31), the Kostelecky et a1 
construction deals with a particular realisation given by 

sk/ = -2Sk/ 0 (+) , (2.38) 

Finally let us point out that such a realisation is not unique. For example, in the n = 2 
case, the Kostelecky et a1 realisation of our variables leads to 4 x 4 matrices while 
there exist 2 x 2  matrices which will be used in the following. In fact, this n = 2  case 
within the spin-orbit coupling procedure (already considered by Durand ( 1985)) will 
be reanalysed in 5 3.3 and compared with the standard procedure in 0 3.4. In the n = 1 
case both procedures evidently coincide. 

3. Symmetries and supersymmetries of the motion in a constant magnetic field 

As already mentioned in the introduction, the interaction with a constant magnetic 
field is intimately related to the study of the harmonic oscillator. In  fact, if the magnetic 
field is chosen along the z axis ( B  = ( O , O ,  B ) ) ,  the interesting context corresponds to 
the two-dimensional harmonic oscillator described in the (x, y )  plane. 
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Let us exploit here the results of P 2 for n = 2 and apply them to the associated 
magnetic considerations which can be pointed out at the levels of symmetries and 
supersymmetries and also at the levels of kinematical and dynamical characteristics. 
We want to put in form successively the connections between the two contexts, first 
by limiting ourselves to symmetries (§  3.1) and secondly by extending our considerations 
to supersymmetries (§§  3.2-3.4). In fact, these last three subsections are devoted to 
supersymmetries (§  3.2) implied by the standard procedure described in 5 2.2, to 
supersymmetries (§  3.3) implied by the spin-orbit coupling procedure described in 
P 2.3 and finally ( §  3.4) to the connection between the two sets of procedures and results. 

3.1. Symmetries 

The Schrodinger equation describing the interaction of a charged ( e )  particle with a 
constant magnetic field B = (0, 0, B )  is 

(3.1) 

where the subscript M refers to the magnetic case and where underlined letters are 
two-dimensional vectors in the (x, y )  plane. With the suitable gauge symmetric potential 
A S  = - i r  x B leading to the ad  hoc magnetic field, we get the Hamiltonian 

(3.2) 

ia,Vr, = HMVr, = f ( p  - - eA)*VrM = fIJ’Vr,,, 

1 2  2 2  HM=f[P2+4e & -eB(xp, - y p ~ ) l  

or by putting eB = 2w and L =  L , , =  (2.7) 

H M  = f ( p 2  + - W L  

= HO-WL. (3.3) 
The last relation clearly shows the connection between the present context and that 
of the harmonic oscillator characterised by (2.1). 

Applying now the results of § 2.1, let us search for the corresponding results in the 
magnetic case. Due to the fundamental role played by the operators P, = (2.4), it is 
not difficult to construct the algebra of symmetries. Indeed, if we define 

P+,, ( t )  = P+,l ( t 1 5 i P+ t 1 (3.4) 
we get from the commutation relations (2.26) between H,, Land the P*.k, the constants 
of motion for HM: 

7 ~ +  = rr + i r ,  = exp(iwt) P+,+( t )  = P+ +(O)  

7 ~ -  = rTT, - i r ,  = exp( - iwt )  P- - (  t )  = P-,-( 0 )  

P+=exp(-2iwt)(FIX-iin,) =exp(-iwt)P+,-(t)  = exp(-2iwt)P+ _ ( O )  

P- =exp(2iwt)(IIX+iin,)  =exp(iwt)P_,+(r)  = exp(2iwt)P_,+(O). 

They generate with the identity the Heisenberg algebra h(4) where we evidently recover 
the well known Johnson-Lippmann constants (Johnson and Lippmann 1949) 

r, = p ,  c wx (3.5) 
and the new ones P, obtained by Durand (1985). 

The dynamical algebra sp(4) is then directly constructed according to (2.5) as 
generated by all the second-order products of the h(4) operators. Inside the sp(4) 
algebra, let us insist on the kinematical one corresponding to s0(2 ,1)0s0(2)  which is 

P- =( t )  = P-,,( r )  *iP-,,( r )  

(3.5) 

T ,  = p X  - WJ’ 
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in fact generated by Ho = (2.1), C, = (2.6) and L E  L I 2  = (2.7). In  terms of the operators 
(3.5), we get for the latter 

H o = % { r + ,  r . - }+IP- ,  P+}l ( 3 . 7 ~ )  

C, = ai{ r s ,  P T }  (3.7b) 

and 

1 
8 W  

L=-[{Tr+, r - > - { P + ,  E)] .  (3.7c) 

In conclusion we find (as expected) isomorphic algebras of dynamical and kinematical 
symmetries for the magnetic and harmonic oscillator cases. The kinematical [s0(2, l ) @  
so (2 ) ]  generators are unchanged but the h(4) ones do correspond to each other 
according to (2.4) and (3.5). A very simple way (Dehin and Hussin 1987) enlightening 
these results will be exploited in § 4 within a general discussion including supersym- 
metries. 

3.2. Supersymmetries and the standard procedure 

Let us now restrict § 2.2 to the n = 2 case and consider the supersymmetric Hamiltonian 
(2.10). Within a 4 x 4  representation of the Clifford algebra (2.13), we have in terms 
of the Pauli matrices (a,, i = 1, 2,3,  U, =;(a,  * ia2 ) ,  (a,)'= aF): 

a,+iO 0 , 

(3.8) 

or correspondingly 

Such a choice will be motivated by further developments: it is essentially different 
from the ones introduced by others (de Crombrugghe and Rittenberg 1983, D'Hoker 
and Vinet 1985, Sattinger and Weaver 1986). 

Here the supersymmetric Hamiltonian (2.10) can be written 

and the total angular momentum operator (2.23) becomes 

(3.10) 

(3.11) 

Now, using H F  = (3.10) and J = (3.11), let us construct a supersymmetric magnetic 
Hamiltonian by analogy with (3.3): 

H E =  H;'-OJJ. (3.12) 



Dynamical and kinematical supersymmetries 66 1 

Such a Hamiltonian does, in fact, correspond to the amplification in the 4 x 4 representa- 
tion of the Pauli Hamiltonian Hp. Indeed we have 

(3.13) 

Due to the structure of (3.12) and the results of 0 2.2, it is straightforward to show 
that the MDI superalgebra corresponding to the magnetic case is again isomorphic to 
osp(4/4) 3 sh(4/4). The study developed in 0 3.1 can immediately be extended to the 
supersymmetric context as it works for the harmonic oscillator (see 0 2.2). The Heisen- 
berg superalgebra sh(4/4) is generated by the identity, the four bosonic (3.5) and the 
four fermionic operators, the last corresponding to the T*,k (2.18) in the harmonic 
oscillator case, i.e. 

5+,+ = 5+,, + 
5-,-=5-,1-i5-,2=exp(-iwt)(T_,,-iT-,2)=exp(-iwt)T_,_ 

= exp(iwt)( T+,] + iT+,J = exp(iwt) T+,+ 

v+,- = exp(-2iwt)5+,- = exp(-2iwt)(&+,, + 
= exp( - i d ) (  T+,, - i T+,*) = exp( - i d )  T+,- 

7-,+ = exp(2iot)5-,+ = exp(2iwt)([-,, + 
= exp(iwt)( T-,, + iT-,*) = exp(iwt) T-,+, 

(3.14) 

Finally the dynamical superalgebra osp(4/4) can immediately be constructed through 
all the second-order products of the sh(4/4) operators as already noticed in the 
preceding cases. 

Let us now examine more deeply the contents of this 41-dimensional dynamical 
superalgebra osp(4/4) 3 sh(4/4) in this magnetic context. 

The kinematical superalgebra is [osp(2/2)Oso(2)] 3 sh(4/4). If the nine sh(4/4) 
generators have already been explicitly mentioned (see (3.5) and (3.14)), let us recall 
that the osp(2/2) superalgebra does contain the operators(3.7a, b ) ,  the generator 
Y = (2.21) and the supersymmetric charges Q+ = (2.14) as well as S, = (2.22). These 
last five operators can evidently be written in terms of the sh(4/4) generators (3.5) and 
(3.14). We get, respectively, 

y = f d 5 t . t  9 5-.-I + [v+,- 9 7,-,+1 (3.15) 

and 

Moreover the so(2) generator coincides with the total angular momentum operator 
J = (3.1 1) which can be written 

J =  ( 1 / 8 w ) ( b + ,  . r - > - { P + ,  P-H+$([5+,+, 5-,-1-[7?+.-, ?,+I). (3.18) 

The kinematical osp(2/2) 0 so( 2) generators are unchanged with respect to the har- 
monic oscillator case but not the sh(4/4) generators. 
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The dynamical superalgebra osp(4/4) is of dimension 32. It contains ten generators 
associated with a sp(4) algebra corresponding to the bosonic symmetries constructed 
through the anticommutators between the operators (3.5) (cf (2.5) in the harmonic 
oscillator context), six generators associated with a so(4) algebra corresponding to the 
fermionic symmetries constructed through the commutators between the operators 
(3.14) (cf (2.19) in the harmonic oscillator context) and sixteen supersymmetric gen- 
erators corresponding to all the products of the operators (3.5) with (3.14). 

Finally let us insist on the 'dynamical 2 kinematical' inclusion (2.27) for n = 2: 

[osp(4/4) 3sh(4 /4) ]  2 [osp(2/2)Oso(2)] 3sh(4 /4)  

Such a result will also be noticed in another way in § 4. 

3.3. Supersymmetries and the spin-orbit coupling procedure 

Let us apply the results of 0 2.3 to the n = 2 case and consider the supersymmetric 
Hamiltonian (2.33). Within a 2 x 2 representation of the algebra (2.32) we propose 

= -cp; = -U* ( 3 . 1 9 ~ )  2 
cpt = c P r = g 1  

or correspondingly, according to (2.31), 

leading to 

[[+,I 7 5-,11+ [ 5 + . 2 ,  &-.*I = -2u3. 

Here the supersymmetric Hamiltonian (2.33) can be written 

(3.20) 

(3.21) 

The M D I  superalgebra (that we call osp(2/4) 33 sh(2/4)) of the Pauli Hamiltonian 
(3.21) has already been determined by Durand (1985). Here let us give its contents 

in order to compare the two supersymmetrisation procedures. The Heisenberg superal- 
gebra sh(2/4) is generated besides the identity by the four bosonic charges (3.5) and 
by only two fermionic charges T,. The last ones are given by 

(3.22) 

They are obtained from the commutation relations between the bosonic charges (3.5) 
and the type-Q supercharges (2.14) 

ss - 1 ( H o  ) ' - ?( p 2  + W 2 X 2 )  - W L  - W U 3  = Hp. 

T, = exp( T 2iwt)u,. 

Indeed we have 

[a:,  T + l = [ ~ ~ ,  7 T - 1 = r ~ : 4 ,  P J = O  
but 

[ Q y  , P,] = * 2 o a T = .  

Let us insist on the fact that this Heisenberg superalgebra is fundamentally different 
from the one obtained in § 3.2. Here the number of fermionic degrees of freedom is 
half of the number of bosonic ones, the explanation being subtended by the use of 
(2.32) in place of (2.13). 
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The dynamical superalgebra osp(2/4) can be constructed through all the second- 
order products between the sh(2/4) generators. We immediately get six new super- 
charges (supplemented by the two type-Q ones given by (3.23)): 

1 1 
S y  = JZ T~ T - - exp( F 2iwt)( rx  * i r y ) u T  ‘-a (3.24) 

(3.25) 
1 

exp(*2iwt)( 7rx i7r,,)u* 

and 

1 1 VY =-P,T, =-exp(*4iwt)(n,*in,)u, Jz Jz (3.26) 

where, for example, the type-S supercharges are associated with bosonic kinematical 
conformal symmetries (3.7b), etc. These six supercharges can also be obtained directly 
by commuting the Q+ with the whole set of bosonic generators associated with the 
algebra sp(4). Moreover, with the fermionic charges (3.22) we also get the fermionic 
generator Y 

Y = U [  T+, T-] = W U ~ .  (3.27) 

In conclusion, we find the 19-dimensional superalgebra osp(2/4) generated by the 
eight supersymmetric charges Q+, S,, U,, V,, the ten operators associated with the 
bosonic sp(4) algebra and the operator Y associated with the fermionic so(2) algebra. 

As a final point let us mention that, in this context, the kinematical superalgebra 
of the Hamiltonian (3.21) is [osp(2/2)@~0(2)]%,sh(2/4) where osp(2/2) is generated 
by the operators ( H o ,  C,) given by (3.7a, b ) ,  the supercharges (3.23) and (3.24) and 
the fermionic operator (3.27). The corresponding so(2) subalgebra is generated by the 
total angular momentum operator 

J = L +  (1/2w) Y = L S f U 3  (3.28) 

while the sh( 2/4) superalgebra has been previously characterised. We also notice that 
the supercharges U ,  and V, are not present in this kinematical context since through 
anticommutation relations they generate dynamical bosonic symmetries only as shown 
by Durand (1985). 

3.4. Comparison between the two procedures 

Through the standard procedure (§  3.2) we have obtained the magnetic supersymmetric 
Hamiltonian (3.12) and have shown in connection with the harmonic oscillator context 
that it admits the M D I  superalgebra osp(4/4)3sh(4/4).  Moreover, through the spin- 
orbit coupling procedure ($3.3) we have constructed the supersymmetric Hamiltonian 
(3.21) and have recovered the superalgebra osp(2/4) 3sh(2/4) .  These results are 
characteristics of 4 x 4 and 2 x 2 representations, respectively, of the corresponding 
algebras (2.13) and (2.32). 

Due to the fact that the Hamiltonian (3.12) is nothing other than the amplification 
(in four dimensions) of the Pauli Hamiltonian (3.21), let us give here the connection 
between the two procedures as well as between the invariance superalgebras. 
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Starting with the supercharges Q y  = (3.23) ensuring (3.21), we can immediately 

{2:, 2!} = H E  (3.29) 

write the Hamiltonian (3.12) as 

if we define the new 4 x 4 magnetic supercharges 

(3.30) 

These supercharges are related to only type-Q kinematical and dynamical supercharges 
of the harmonic oscillator. Indeed we get in connection with (2.20) 

(3.31) 

In connection with (3.24)-(3.26), if we extend these considerations to the supercharges 

we immediately get 

(3.32) 

(3.33) 

and 

Thus, with respect to the harmonic oscillator context, the supercharges 2: and 'By 
are purely of type Q while the supercharges 9 y  and 7fY are purely of type S. In 
conclusion, the eight supercharges of the spin-orbit coupling procedure are doubled 
in the standard one and correspond to the amplified ones in the explicit form (3.30) 
and (3.32). These last do  form a meaningful subset of the sixteen supercharges obtained 
in the standard procedure. 

At the level of the fundamental superalgebras sh(4/4) and sh(2/4) associated with 
the standard and spin-orbit coupling procedures respectively, let us notice that the 
four fermionic charges (3.14) belonging to sh(4/4) are realised (with (3.9)) in the form 

5+,+ = -- a ( (+,+I O 0 t-.-=z ( u,-l O 0 

and 

(3.36) 

(3.37) 

Thus only the last ones (3.37) can immediately be written in terms of the two fermionic 
charges T, given by (3.22) associated with the algebra sh(2/4). In fact we have 

(3.38) 
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explaining the inclusion 

sh(4/4) 1 sh(2/4). (3.39) 

Through these elements, it is then clear that the eight supercharges (3.30) and (3.32) 
do effectively refer to only the fermionic charges (3.38). Indeed we have 

(3.40) 

Moreover only one charge (generating an so(2) algebra) of the so(4) dynamical algebra 
of fermionic symmetries (cf (2.19)) can be expressed in terms of (3.38). In conclusion, 
we then have explained the inclusion 

(3.41) [osp(4/4) %, sh(4/4)] 1 [osp(2/4) 3 sh(2/4)]. 

4. A simple change of variables 

At the level of symmetries, we have already proposed (Dehin and Hussin 1987) a very 
simple change of variables enlightening the connection between the two-dimensional 
harmonic oscillator and the motion in a constant magnetic field (chosen along the z 
axis as in § 3). It corresponds to a time-dependent rotation R in the (x, y) plane 
defined by 

(io) (;") - (cos wt  -sin ut) (;E) 
= R(wt,  4 - sinwt coswt (4.1) 

when 2w = eB. 
Such a very clear point of view can evidently work also in the supersymmetric 

context. It can help us to underline correspondences in dynamical and kinematical 
symmetries in supersymmetric quantum mechanics. Let us immediately point out that 
the previously mentioned connection is in the supersymmetric context obtained if we 
ask for an action of our rotation on bosonic as well as on fermionic variables. This 
demand can immediately be understood through the superspace formulation 
(Bouquiaux et a1 1987) of such problems where the bosonic and fermionic variables 
have to be combined in superfields of the type 

Z, ( t ) = xk ( t ) + io@, ( t ) + i @P, ( t )  + egFk ( t ) 

if a N = 2 supersymmetric theory has to be constructed. 
Let us first consider the bosonic symmetries which are fundamentally subtended 

by the four operators P+,k (k = 1,2) given by (2.4) in the harmonic oscillator context 
and by the four operators and P, given by (3.5) in the magnetic case. It is not 
difficult to show that they correspond to each other through the rotation (4.1). We 
effectively have 

k = l , 2  

and 

~ O , , , ~ i ~ : , , - e x p (  *2iwt)(n,*inY) = P,. (4.3) 
Consequently all the dynamical sp(4) symmetries do correspond to each other in both 
cases since they are products of the h(4) generators. Moreover we also get here a 
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better understanding of the fact that only those which are associated with so(2, 1)0s0(2) 
(the kinematical ones) are unchanged because they are invariant under the rotation 
R ( w t ,  e3). 

Let us then consider the fermionic symmetries which are fundamentally subtended 
by the operators T-t,k given by (2.18) in the harmonic oscillator context and by the 
operators if*,* and q*,T given by (3.14) in the magnetic case. The correspondence is 
here realised by rotating the fermionic variables 6 i . k .  Indeed we have 

so that 

and 

(4.4) 

(4.5) 

The dynamical so(4) symmetries do correspond to each other in both cases and we 
also understand why only the kinematical operator Y = (2.22) is unchanged. 

Finally, through our understanding of the supercharges (with the help of the 
results (2.20)) as well as through the correspondences (4.2), (4.3), (4.5) and (4.6) it is 
evident that all the supercharges do correspond to each other in both the harmonic 
oscillator and magnetic contexts. Since the same rotation acts on the bosonic and 
fermionic generators, the 'kinematical' supercharges are unchanged (cf (2.30)). 
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